Homework IV

Due Date: 10/05/2023
Exercise 1 (3 points). Compute the following three Fourier series.
(i) Find the Fourier sine series of $\phi(x)=x$ on the interval $[0, \pi]$.
(ii) Find the Fourier cosine series of $\phi(x)=x$ on the interval $[0, \pi]$.
(iii) Find the full Fourier series of $\phi(x)=x$ on the interval $[-\pi, \pi]$.

Exercise 2 (2 points). Solve the following problem on $[0, \infty) \times[0, \pi] \subset \mathbb{R}_{t} \times \mathbb{R}_{x}$,

$$
\left\{\begin{array}{c}
\partial_{t}^{2} u=\partial_{x}^{2} u \\
u(t, 0)=u(t, \pi)=0 \\
u(0, x)=x, \partial_{t} u(0, x)=0
\end{array}\right.
$$

Exercise 3 (3 points). Consider the following two questions.
(i) Let f be the function defined on $[-\pi, \pi]$ by $f(x)=|x|$. Using Parseval's identity to show that

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}=\frac{\pi^{4}}{96} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90} .
$$

(ii) Consider the 2π-periodic odd function defined on $[0, \pi]$ by $f(x)=x(\pi-x)$. Show that

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{6}}=\frac{\pi^{6}}{960} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}
$$

Exercise 4 (2 points). In this question, our goal is to show that the solution flow of the incompressible Euler system on the torus $\mathbb{T}^{2}=\mathbb{R}^{2} /(2 \pi \mathbb{Z})^{2}$ is not uniformly continuous in $H^{1}\left(\mathbb{T}^{2}\right)$. We start with some notations and conventions.
Notations and conventions. The 2 -torus \mathbb{T}^{2} is the cube $[0,2 \pi]^{2}$ with opposite sides identified. This means that the points $\left(x_{1}, 0\right)$ and $\left(x_{1}, 2 \pi\right)$ are identified and the points $\left(0, x_{2}\right)$ and $\left(2 \pi, x_{2}\right)$ are identified. A function $f: \mathbb{T}^{2} \rightarrow \mathbb{C}$ is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ which is 2π-periodic in $\left(x_{1}, x_{2}\right)$, that is, $f\left(x_{1}, x_{2}\right)=f\left(x_{1}+2 \pi, x_{2}\right)=$ $f\left(x_{1}, x_{2}+2 \pi\right)$. We define $L^{1}\left(\mathbb{T}^{2}\right)$ as the space of f such that

$$
\|f\|_{L^{1}\left(\mathbb{T}^{2}\right)}:=\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|f\left(x_{1}, x_{2}\right)\right| \mathrm{d} x_{1} \mathrm{~d} x_{2}<\infty
$$

From now on, we denote $x=\left(x_{1}, x_{2}\right) \in[0,2 \pi]^{2}$ and $k=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}$. To simplify notation, we also denote

$$
\int_{[0,2 \pi]^{2}} f(x) \mathrm{d} x:=\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|f\left(x_{1}, x_{2}\right)\right| \mathrm{d} x_{1} \mathrm{~d} x_{2}, \quad \text { for any } f \in L^{1}\left(\mathbb{T}^{2}\right)
$$

To $f \in L^{1}\left(\mathbb{T}^{2}\right)$, we associate its Fourier coefficient,

$$
(\mathcal{F} f)(k):=\widehat{f}(k)=\int_{[0,2 \pi]^{2}} e^{-i k \cdot x} f(x) \mathrm{d} x, \quad \text { for } k \in \mathbb{Z}^{2}
$$

Then we define $H^{1}\left(\mathbb{T}^{2}\right)$ as the space of f such that

$$
\|f\|_{H^{1}\left(\mathbb{T}^{2}\right)}^{2}:=\sum_{k \in \mathbb{Z}^{2}}\left(1+|k|^{2}\right)|\widehat{f}(k)|^{2}<\infty .
$$

Eventually, if $U=\left(u_{1}, u_{2}\right)$, we set $\|U\|_{H^{1}\left(\mathbb{T}^{2}\right)}^{2}=\left\|u_{1}\right\|_{H^{1}\left(\mathbb{T}^{2}\right)}^{2}+\left\|u_{2}\right\|_{H^{1}\left(\mathbb{T}^{2}\right)}^{2}$.
The Euler system on $U=\left(u_{1}, u_{2}\right)$ is

$$
\begin{align*}
& \partial_{t} U+\left(U \cdot \nabla_{x}\right) U-\nabla_{x} \Delta^{-1} \operatorname{div}\left(\left(U \cdot \nabla_{x}\right) U\right)=0, \quad \text { for }(t, x) \in[0, \infty) \times \mathbb{T}^{2} \\
& \quad \operatorname{div} U=0, \quad \text { for }(t, x) \in[0, \infty) \times \mathbb{T}^{2} \quad \text { and } \quad U_{\mid t=0}=U^{0}, \quad \text { for } x \in \mathbb{T}^{2} \tag{1}
\end{align*}
$$

Here, the operator Δ^{-1} is the inverse operator of Δ, that is,

$$
\widehat{\Delta^{-1} v}(k)=-\frac{1}{|k|^{2}} \widehat{v}(k), \quad \text { for any } k \in \mathbb{Z}^{2}
$$

The goal of the following questions is to construct two sequences of initial data $\left(U_{n}^{0}, V_{n}^{0}\right)_{n \in \mathbb{N}^{+}}$of the problem (1) such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|U_{n}^{0}-V_{n}^{0}\right\|_{H^{1}\left(\mathbb{T}^{2}\right)}=0 \tag{2}
\end{equation*}
$$

but, for $t>0$ arbitrary small and for n large enough,

$$
\begin{equation*}
\left\|U_{n}(t)-V_{n}(t)\right\|_{H^{1}\left(\mathbb{T}^{2}\right)} \geq c_{0}(t)>0 \tag{3}
\end{equation*}
$$

where U_{n} and V_{n} denote the solutions of the Euler system (1) with initial data U_{n}^{0} and V_{n}^{0} at $t=0$, respectively.

1. Compute the norms in $H^{1}\left(\mathbb{T}^{2}\right)$ of the functions $f_{1}\left(x_{1}, x_{2}\right)=C \in \mathbb{C}, f_{2}\left(x_{1}, x_{2}\right)=$ $\sin \left(n x_{1}\right)$, and $f_{3}\left(x_{1}, x_{2}\right)=\sin \left(n x_{2}\right)$ where $n \in \mathbb{Z}$.
For $n \in \mathbb{N}$ and $\omega \in \mathbb{R}$, we set $U_{n, \omega}=\left(u_{1}, u_{2}\right)$ where

$$
\begin{align*}
& u_{1}(t, x)=\left(\omega+\cos \left(n x_{2}-\omega t\right)\right) n^{-1} \\
& u_{2}(t, x)=\left(\omega+\cos \left(n x_{1}-\omega t\right)\right) n^{-1} . \tag{4}
\end{align*}
$$

2. (a) Compute

$$
\operatorname{div} U_{n, \omega}, \quad \partial_{t} U_{n, \omega}+\left(U_{n, \omega} \cdot \nabla_{x}\right) U_{n, \omega}, \quad \text { and } \quad \operatorname{div}\left(\left(U_{n, \omega} \cdot \nabla_{x}\right) U_{n, \omega}\right)
$$

(b) Set $\omega_{n}(t, x)=\sin \left(n x_{1}-\omega t\right) \sin \left(n x_{2}-\omega t\right)$. Show that

$$
\Delta\left(\frac{1}{2 n^{2}} \omega_{n}\right)=-\omega_{n}, \quad \text { for any } n \in \mathbb{N}
$$

(c) Let Q be a periodic solution of equation $\Delta Q=\omega_{n}$ and let $R=Q+\frac{1}{2 n^{2}} \omega_{n}$. Show that $\Delta R=0$.
(d) Using the inverse Fourier transform, we have

$$
R(x)=\frac{1}{(2 \pi)^{2}} \sum_{k \in \mathbb{Z}^{2}} \widehat{R}(k) e^{i k \cdot x}, \quad \text { for } x \in[0,2 \pi]^{2} .
$$

Show that

$$
R(x)=\frac{1}{(2 \pi)^{2}} \widehat{R}(0) \quad \text { and so } \quad Q=\Delta^{-1} \omega_{n}=-\frac{1}{2 n^{2}} \omega_{n}+C_{n}, \quad \text { where } C_{n} \in \mathbb{C} .
$$

Hint: Using the fact that

$$
\widehat{\Delta R}(k)=-|k|^{2} \widehat{R}(k), \quad \text { for any } k \in \mathbb{Z}^{2} .
$$

(e) Compute $\nabla_{x} \Delta^{-1} \operatorname{div}\left(\left(U_{n, \omega} \cdot \nabla_{x}\right) U_{n, \omega}\right)$.
(d) Deduce that $U_{n, \omega}$ is a solution of (1).

Let

$$
U_{n, \omega}^{0}=U_{n, \omega}(0)=\left(\left(\omega+\cos \left(n x_{2}\right)\right) n^{-1},\left(\omega+\cos \left(n x_{1}\right)\right) n^{-1}\right) .
$$

Denote $U_{n}^{0}=U_{n, 1}^{0}$ and $V_{n}^{0}=V_{n,-1}^{0}$.
3. Show that (2) is satisfied.
4. Let U_{n} and V_{n} be the solutions of Euler system (1) corresponding to these initial data. Show that, there exist $C_{3}>0$ and $C_{4}>0$ such that

$$
\left\|U_{n}-V_{n}\right\|_{H^{1}\left(\mathbb{T}^{2}\right)} \geq C_{3}|\sin t|-\frac{C_{4}}{n}
$$

and then conclude that (3) is true.
Hint: From the definition of U_{n} and V_{n} to compute $U_{n}-V_{n}$, and then using the fact that $\cos a-\cos b=2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$ to rewrite $U_{n}-V_{n}$.

