
Homework IV
Due Date: 10/05/2023

Exercise 1 (3 points). Compute the following three Fourier series.
(i) Find the Fourier sine series of ϕ(x) = x on the interval [0, π].
(ii) Find the Fourier cosine series of ϕ(x) = x on the interval [0, π].
(iii) Find the full Fourier series of ϕ(x) = x on the interval [−π, π].

Exercise 2 (2 points). Solve the following problem on [0,∞)× [0, π] ⊂ Rt × Rx,
∂2
t u = ∂2

xu,

u(t, 0) = u(t, π) = 0,

u(0, x) =x, ∂tu(0, x) = 0.

Exercise 3 (3 points). Consider the following two questions.
(i) Let f be the function defined on [−π, π] by f(x) = |x|. Using Parseval’s identity
to show that

∞∑
n=0

1

(2n+ 1)4
=

π4

96
and

∞∑
n=1

1

n4
=

π4

90
.

(ii) Consider the 2π-periodic odd function defined on [0, π] by f(x) = x(π − x).
Show that

∞∑
n=0

1

(2n+ 1)6
=

π6

960
and

∞∑
n=1

1

n6
=

π6

945
.

Exercise 4 (2 points). In this question, our goal is to show that the solution flow
of the incompressible Euler system on the torus T2 = R2/(2πZ)2 is not uniformly
continuous in H1(T2). We start with some notations and conventions.
Notations and conventions. The 2-torus T2 is the cube [0, 2π]2 with opposite sides
identified. This means that the points (x1, 0) and (x1, 2π) are identified and the
points (0, x2) and (2π, x2) are identified. A function f : T2 → C is a function
f : R2 → C which is 2π-periodic in (x1, x2), that is, f(x1, x2) = f(x1 + 2π, x2) =
f(x1, x2 + 2π). We define L1(T2) as the space of f such that

∥f∥L1(T2) :=

∫ 2π

0

∫ 2π

0

|f(x1, x2)|dx1dx2 < ∞.

From now on, we denote x = (x1, x2) ∈ [0, 2π]2 and k = (k1, k2) ∈ Z2. To simplify
notation, we also denote∫

[0,2π]2
f(x)dx :=

∫ 2π

0

∫ 2π

0

|f(x1, x2)|dx1dx2, for any f ∈ L1(T2).

To f ∈ L1(T2), we associate its Fourier coefficient,

(Ff)(k) := f̂(k) =

∫
[0,2π]2

e−ik·xf(x)dx, for k ∈ Z2.

Then we define H1(T2) as the space of f such that

∥f∥2H1(T2) :=
∑
k∈Z2

(1 + |k|2)|f̂(k)|2 < ∞.

Eventually, if U = (u1, u2), we set ∥U∥2H1(T2) = ∥u1∥2H1(T2) + ∥u2∥2H1(T2).
The Euler system on U = (u1, u2) is

∂tU + (U · ∇x)U −∇x∆
−1div((U · ∇x)U) = 0, for (t, x) ∈ [0,∞)× T2,

divU = 0, for (t, x) ∈ [0,∞)× T2 and U|t=0 = U0, for x ∈ T2.
(1)

1



2

Here, the operator ∆−1 is the inverse operator of ∆, that is,

∆̂−1v(k) = − 1

|k|2
v̂(k), for any k ∈ Z2.

The goal of the following questions is to construct two sequences of initial data(
U0
n, V

0
n

)
n∈N+ of the problem (1) such that

lim
n→∞

∥∥U0
n − V 0

n

∥∥
H1(T2)

= 0, (2)

but, for t > 0 arbitrary small and for n large enough,
∥Un(t)− Vn(t)∥H1(T2) ≥ c0(t) > 0, (3)

where Un and Vn denote the solutions of the Euler system (1) with initial data U0
n

and V 0
n at t = 0, respectively.

1. Compute the norms in H1(T2) of the functions f1(x1, x2) = C ∈ C, f2(x1, x2) =
sin(nx1), and f3(x1, x2) = sin(nx2) where n ∈ Z.
For n ∈ N and ω ∈ R, we set Un,ω = (u1, u2) where

u1(t, x) = (ω + cos(nx2 − ωt))n−1,

u2(t, x) = (ω + cos(nx1 − ωt))n−1.
(4)

2. (a) Compute
divUn,ω, ∂tUn,ω + (Un,ω · ∇x)Un,ω, and div ((Un,ω · ∇x)Un,ω) .

(b) Set ωn(t, x) = sin(nx1 − ωt) sin(nx2 − ωt). Show that

∆

(
1

2n2
ωn

)
= −ωn, for any n ∈ N.

(c) Let Q be a periodic solution of equation ∆Q = ωn and let R = Q + 1
2n2ωn.

Show that ∆R = 0.
(d) Using the inverse Fourier transform, we have

R(x) =
1

(2π)2

∑
k∈Z2

R̂(k)eik·x, for x ∈ [0, 2π]2.

Show that

R(x) =
1

(2π)2
R̂(0) and so Q = ∆−1ωn = − 1

2n2
ωn + Cn, where Cn ∈ C.

Hint: Using the fact that
∆̂R(k) = −|k|2R̂(k), for any k ∈ Z2.

(e) Compute ∇x∆
−1div ((Un,ω · ∇x)Un,ω).

(d) Deduce that Un,ω is a solution of (1).
Let

U0
n,ω = Un,ω(0) =

(
(ω + cos(nx2))n

−1, (ω + cos(nx1))n
−1

)
.

Denote U0
n = U0

n,1 and V 0
n = V 0

n,−1.
3. Show that (2) is satisfied.
4. Let Un and Vn be the solutions of Euler system (1) corresponding to these initial
data. Show that, there exist C3 > 0 and C4 > 0 such that

∥Un − Vn∥H1(T2) ≥ C3| sin t| −
C4

n
,

and then conclude that (3) is true.
Hint: From the definition of Un and Vn to compute Un − Vn, and then using the
fact that cos a− cos b = 2 sin

(
a+b
2

)
sin

(
a−b
2

)
to rewrite Un − Vn.


